Finite element analysis of stresses developed in the blood sac of a left ventricular assist device.

نویسندگان

  • T L Haut Donahue
  • W Dehlin
  • J Gillespie
  • W J Weiss
  • G Rosenberg
چکیده

The goal of this research is to develop a 3D finite element (FE) model of a left ventricular assist device (LVAD) to predict stresses in the blood sac. The hyperelastic stress-strain curves for the segmented poly(ether polyurethane urea) (SPEUU) blood sac were determined in both tension and compression using a servo-hydraulic testing system at various strain rates. Over the range of strain rates studied, the sac was not strain rate sensitive, however the material response was different for tension versus compression. The experimental tension and compression properties were used in a FE model that consisted of the pusher plate, blood sac and pump case. A quasi-static analysis was used to allow for nonlinearities due to contact and material deformation. The 3D FE model showed that blood sac stresses are not adversely affected by the location of the inlet and outlet ports of the device and that over the systolic ejection phase of the simulation the prediction of blood sac stresses from the full 3D model and an axisymmetric model are the same. Minimizing stresses in the blood sac will increase the longevity of the blood sac in vivo.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design an Equivalent Left Ventricular Assist Device for Medical Equipment Labs

LVAD is a mechanical pump supporting a weak heart function and blood flow. Sometimes, the heart may not recover fast enough to take over the pumping action immediately after surgery, in such patients a temporary support device has been employed to maintain the pumping action until the patient’s own heart recovers. This device can be considered as a temporary alternative before the process of ar...

متن کامل

Improvement of Left Ventricular Assist Device (LVAD) in Artificial Heart Using Particle Swarm Optimization

In this approach, the Left ventricular assist pump for patients with left ventricular failure isused. The failure of the left ventricle is the most common heart disease during these days. Inthis article, a State feedback controller method is used to optimize the efficiency of a samplingpump current. Particle Swarm Algorithm, which is a set of rules to update the position andvelocity, is applied...

متن کامل

Application of centrifugal pump in right ventricular failure due to pulmonary artery hypertension. (A case report)

Background: It has not been yet developed a ost suitable method to treat right ventricular failure due to pulmonar artery hypertention resulted from ventricular arrhythia. Though some case reports about patients ready to heart transplant using left assist device or biventral assist device as bridge have been published in Journals, but nocase concerning application of centrifugal pump for treatm...

متن کامل

Finite element analysis of stresses developed in blood sacs of a pusherplate blood pump.

Mechanical circulatory support (MCS) devices are blood pumps that support or replace the function of the native heart. It is important to minimize the material stresses in the flexing blood sac or diaphragm in order to increase the duration of support these devices can provide. An axisymmetric finite element model of a pusherplate blood pump was constructed to evaluate the effect of various des...

متن کامل

Appropriate Loading Techniques in Finite Element Analysis of Underground Structures

Stability of underground structures is assessed by comparing rock strength with induced stresses resulted from ground stresses. Rock mass surrounding the opening may fail either by fracture or excessive deformation caused. Accurate calculation of induced stresses is therefore fundamental in the stability analysis of an opening. Although numerical methods, particularly finite element method, are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Medical engineering & physics

دوره 31 4  شماره 

صفحات  -

تاریخ انتشار 2009